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Can satellite imagery and artificial 
intelligence modernise wildlife surveys 
in Africa? 

November 2021–December 
2022. This study investigates 
the feasibility of using artificial 
intelligence (AI) techniques 
and satellite images in 
wildlife surveys. 
Three approaches to detect and identify 
animals on satellite images are examined: 
the first approach uses only the human 
eye, the second uses computer vision and 
open-source (pre-trained) neural network 
models, and the third uses a combination 
of computer vision and a bespoke 
convolutional neural network model. 

The project aimed to test all three 
approaches, with wildlife sightings 
reported by field teams around the 
time of satellite pass-over. Although 
the results show promise, significant 
challenges in using these methods 
remain. This paper validates their 
ongoing value, particularly in more 
heterogeneous environments, and gives 
suggestions for future research. 
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Abstract 
As species numbers decline faster than ever before, there is an urgent need to improve our understanding of population numbers. 
For conservationists to protect species that are under pressure, it is necessary for them to understand current populations, 
including their welfare and behaviour. This study investigates the feasibility of using AI techniques and satellite images in ecology 
studies and wildlife surveys. Three approaches for the detection and identification of animals on satellite images are examined. 
The first approach uses only the human eye to find and classify different species using field-based expertise and insight. The 
second approach uses computer vision and open-source (pretrained) neural network models to detect and identify animals. The 
third approach uses a combination of computer vision and a bespoke convolutional neural network model, trained on a set of 
synthetic animal images, to detect and identify animals. The project aimed to test all three approaches, by evaluating the results of 
the algorithm detections and those of the human detections on the same satellite images alongside ground sightings reported by 
field teams around the time of satellite pass-over. Although the results show promise, challenges remain, as neither the algorithm 
detections nor visual human inspection of the same satellite imagery gave conservation managers the level of accuracy in species 
classification required for wildlife surveys. This paper describes the methods of the study and challenges presented, and provides 
suggestions for future research. 
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1. Introduction 
There is growing interest within the conservation community 
about harnessing ever-increasing high-resolution satellite 
images1 and AI technologies to monitor large animals (over 
1m in size) across vast and hard-to-reach areas. 

Numerous studies2 have shown sub-meter satellite imagery and 
deep learning as a viable monitoring technique in constrained 
use cases with set conditions, especially over homogenous 
landscapes. These include the detection and counting of 
polar bears, penguins, yaks, elk, wildebeest, zebra, whales, 
albatross, elephants, and livestock. However, animal detection 
and identification on satellite images of heterogeneous 
environments has proven to be more challenging. 

This study investigated the viability of expert human-eyeballing 
and AI methods on satellite imagery in animal identification 
and classification in both heterogenous and homogenous 
savannah landscapes. 

Various challenges uncovered through this 
investigation include: 

• The lack of known animal sightings in the imagery to 
function as labelled training data. To address this, the teams 
explored the use of synthetic and/or adapted images that 
were representative of real sightings to act as training data 
for the approaches considered. 

• The complexity in dealing with heterogeneous 
environments – landscapes that have complex and 
non-uniform terrain, flora and lighting. The complexity 
of these environments uncovered unique challenges 
that oppose typical image processing methodologies. 
Complexity in an image is synonymous with ‘noise’ in the 
image or the variation of brightness or colour that make it 
extremely difficult to isolate one region of interest from the 
background. To combat this, the AI teams explored unique-
image processing techniques. 

• The difficulty of both human and AI model analysis to 
discern between different species of large mammals, 
in certain situations, in 30cm-resolution imagery. These 
situations include when different species are together in the 
same area (elephants/rhinos, wildebeest/buffalo) and when 
juvenile species are mixing with other adult species (for 
example, it is difficult to discern the difference between a 
juvenile elephant and an adult buffalo or rhino). Additionally, 
when species such as elephants’ bunch close together, the 
shadows of several animals merge into one, resembling a 
‘blob’, and it is difficult to count exact numbers. 

This study explores the challenges present in using AI for 
satellite image classification, highlights learnings, and 
validates the ongoing value of expert eyeballing, particularly in 
more heterogeneous environments. 

Multiple aerial counts are made 
over a protected area or region, 
with a high degree of variance 
in results. These surveys can 
take months to complete and 
are expensive in terms aircraft 
hire, fuel and human resources. 

2. Problem statement 
As species numbers decline faster than ever before, there is 
an urgent need to improve our understanding of population 
numbers, how species are faring and where they are moving, 
so conservationists can better protect them. 

Wildlife surveys in savannah environments are typically done 
using aerial counts from small aircrafts. Multiple aerial counts 
are made over a protected area or region, with a high degree 
of variance in results. These surveys can take months to 
complete and are expensive in terms aircraft hire, fuel and 
human resources. 

CCF, NTT, the Airbus Foundation, Microsoft, Madikwe Futures 
Company NPC and NRT sought to answer the question: 

In what situations can AI and satellite imagery become a viable 
method for modernising wildlife surveys and what additional 
value can it bring to biodiversity conservation efforts? 

1. A summary of related work is available in Section 7: Related work 

2. A summary of related work is available in Section 7: Related work 
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3. Approach 
High-resolution satellite imagery and AI have the potential to take a snapshot in time and show the number and location of 
endangered species across hard-to-reach areas, within a short timeframe, thereby reducing the time and cost of the survey. 

This study set out to move beyond constrained use cases and understand the feasibility of using these techniques in the field to 
modernise wildlife surveys and create production solutions which can be applied in real conditions for ecology studies. 

3.1. Satellite imagery 
Certain conditions were considered when looking at the Airbus satellite images. Through Airbus archive data and new satellite 
tasking from the Airbus satellites Pléiades3 and Pléiades Neo4 , this study endeavoured to build training data and test the feasibility 
of the three detection approaches (as described in Section 4: Methods). 

Satellite tasking is the process followed to request a satellite to capture a designated area of interest (AOI). Areas of high wildlife 
density was the criterion used to select areas of interest in this study. The two sites selected, as shown in Figure 1, were Madikwe 
Game Reserve in South Africa and Sera Wildlife Conservancy, managed by NRT, in Kenya. 

Madikwe Game Reserve, South Africa, 750km2 Sera Wildlife Sanctuary, Kenya, 100km2 

Figure 1: Satellite tasking areas of interest (map data: Google, Airbus/Maxar Technologies) 

3. For more information on the Airbus Pléiades satellite, see https://www.intelligence-airbusds.com/en/8692-pleiades. 

4. For more information on the Airbus Pléiades Neo satellite, see https://www.airbus.com/en/products-services/space/earth-observation/earth-observation-portfolio/ 
pleiades-neo. 

https://www.airbus.com/en/products-services/space/earth-observation/earth-observation-portfolio
https://www.intelligence-airbusds.com/en/8692-pleiades
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3.2. Taskings and captures 
In support of well-coordinated taskings and optimum captures, the following tasking requirements were targeted: 

• An incident angle of below 10°, for maximum image resolution and a top-down view of the animals. 
• Weather conditions with low cloud coverage (<10%), for minimal obstruction for potential sighting. 
• Images were panchromatic and orthorectified in natural colour, and pansharpened on four-band format processing through the 

Airbus pipeline. 
In September 2021, satellite images of Madikwe Game Reserve and Sera Wildlife Sanctuary NRT were acquired from the Airbus 
Pléiades satellite (50cm resolution at 15° incidence angle). Sample imagery at the same resolution (with differing incidence angles) 
was also acquired from the Airbus archive. This was used to compare the landscape and set up a data-processing pipeline. 

In late November 2021, the Airbus Pléiades Neo constellation was launched, with the option of twice daily 30cm resolution 
acquisition available globally. Pléiades Neo tasking capability became available to CCF in January 2022 via the Airbus 
OneAtlas6 platform. 

In February and March 2022, the project acquired high-resolution 30cm Pléiades Neo imagery of high-density wildlife areas in both 
reserves. Details of each capture are listed in Table 1. 

Date of acquisition Satellite Location Angle Object of interest 
sightings 

13/02/2022 Pléiades Neo Sera (NRT) 2.7 100 

13/02/2022 Pléiades Neo II Ngwesi (NRT) 13 2 

02/03/2022 Pléiades Neo Madikwe (North) 13 55 

02/03/2022 Pléiades Neo Madikwe (South) 18 50 

28/03/2022 Pléiades Neo Madikwe (North) 25 10 

High cloud cover 

03/09/2022 Pléiades Neo Madikwe (North) 39 5 

26/09/2021 Pléiades Sera (NRT) 5 54 

02/10/2021 Pléiades Sera (NRT) 5 High cloud cover 

28/08/2021 Pléiades Madikwe 15 121 

Table 1: Satellite capture data set 

5. The incidence angle is the angle from the target point of view. It represents the angle between the ground normal and look direction from the satellite, combining 
the pitch and roll angles. Source: https://www.intelligence-airbusds.com/en/8719-angle-conversion#:~:text=The%20incidence%20angle%20is%20the,the%20 
instrument%20point%20of%20view. 

6. For more information on the OneAtlas platform, see https://oneatlas.airbus.com/home 

https://oneatlas.airbus.com/home
https://www.intelligence-airbusds.com/en/8719-angle-conversion#:~:text=The%20incidence%20angle%20is%20the,the%20
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3.3. Capture learnings 

3.3.1. Pass-over times 
This study found that the time of satellite pass-over is a major 
constraint to performing wildlife surveys in areas near the 
equator. The capture times for these latitudes are consistently 
around midday, but African wildlife often venture out into the 
open in the early morning to feed and drink, then retreat to the 
shade to avoid the heat of the midday sun. This is the case 
in both wet and dry seasons. In NRT Kenya, traditional aerial 
census typically starts at 7.30am and is completed by 9am. 

Pléiades Neo satellites are on an orbit path, which means 
images of Madikwe in South Africa can be acquired only 
between 10:00am and 11:00am SAST, and images of NRT 
conservancies in Kenya can be acquired between 11.30am and 
12.30pm EAT. Whilst satellites maximise daylight pass-through, 
the lower latitude in South Africa and tasking that started an 
hour earlier allowed for better conditions for wildlife sightings 
and approach testing. The project analysis therefore continued 
with a focus on Madikwe Game Reserve, while sharing and 
reviewing results with NRT throughout. 

3.3.2. Cloud cover 
Another major hurdle in using satellite imagery to accurately 
identify and count animals is cloud cover. The Madikwe 
captures were tasked on optimal days, with excellent visibility 
and clear skies, with the image recording only 5% cloud cover. 

A field team sighting identified 2 rhino at a known location, 
however on the satellite image, this sighting was concealed 
by the only cloud in the sky that morning. If this had been an 
annual wildlife survey, these two important sightings of critically 
endangered species would have been missed. The example 
in Image 1 has been included to show the risk cloud cover will 
pose if this method replaces traditional wildlife surveys. There is 
a high probability that some small cloud will obscure important 
sightings, when surveying such large areas even on a largely 
cloud free day. 

Image 1: Satellite image showing cloud cover, Madikwe Game Reserve 
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  3.3.3. Shadows 

Pléiades Neo © Airbus DS 2022 

Image 2: Satellite image of group of elephants under trees with 
shadows at a dam in Madikwe 

Shadows in remotely sensed imagery are produced by 
objects such as clouds, trees and mountains. Shadows 
have the potential to impact the accuracy of information 
extraction. A challenge experienced in this study is when 
the shadows of groups of animals merge into one block, 
particularly when the animals are around or near vegetation 
or large features like rocks.  Image 2 shows elephants 
clustered together at a dam in Madikwe. In this image, it 
is difficult to accurately count how many elephants are in 
the yellow box. Independent human detection of this image 
identified 5 elephants, but this is debated. 

3.3.3. Incident angles 
This study aimed to capture satellite images at the best 
resolution, with new acquisitions requested as close to the 
nadir line as possible, at the lowest incident angle. (Nadir line 
is the point on the Earth’s surface directly below the satellite) 
However, at points during the study, images with a high 
incident angle were delivered instead. 

Pléiades Neo © Airbus DS 2022 

Image 3 shows the Pléiades Neo 30cm image captured at 
Madikwe Game Reserve at an incident angle of 25°. Through 
the clouds, the image shows 9 elephants in an open area, and 
with a more defined outline than that of the elephants shown 
Image 2, where the image was captured at a top-down angle 
below 15° degrees. 

On a second occasion, again the satellite’s priority was 
diverted, so the project received a Pléiades Neo 30cm image, 
shown in Image 4, with an incident angle of 39°. At the 
exact time of this capture, Madikwe’s field teams sighted 5 
elephants at these location coordinates. 

Pléiades Neo © Airbus DS 2022 

Image 4: Pléiades Neo 30cm image at incident angle 39°, Madikwe 
Game Reserve 

At 39°, the orthorectification resulted in considerable image 
distortion and lower resolution, making it difficult to spot 
the sighted elephants. Zooming in to the sighting location, 
it is exceedingly difficult for the human eye to identify the 
5 elephants in the image without knowing the location 
coordinates (which were provided). 

When comparing the above oblique images, it was noted that 
the definition of the elephants’ outlines was clearer in the image 
taken on the nadir line, as shown in Image 3. Therefore, for 
future work (Section 6), it would be useful to explore a more 
optimum incident angle for spotting elephants, specifically, 
between 18°and 27°. 

Image 3: Pléiades Neo 30cm image at incident angle 25°, Madikwe 
Game Reserve 
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4. Methods 
This study examined three approaches for the detection and 
identification of species on satellite images: 

• The first approach, referred to as the Human Identification 
and Ground Truthing approach, uses local, field expert human-
eyeballing of the satellite image and on-the-ground wildlife 
sightings from field teams. 

• The second approach, referred to as the Spot and Label 
Object Detection approach, uses publicly available training 
data and three pre-trained models – RetinaNet, EfficientDet 
and YOLOv5 – to detect animal species on a selection of 
satellite images. 

• The third approach, referred to as the Binary Large Object 
Detection and Classification approach, uses a set of 
synthetically created animal images which are pre-processed 
by computer vision models and then used to train a 
convolutional neural network (CNN) machine learning model. 

The approaches were evaluated by comparing the second and 
third AI detection and identification results with those of the 
first expert human identification of animals on the same image. 
In addition, teams used best efforts to compare all the results 
with on-the-ground field sightings made at the time of the 
satellite image acquisition. 

4.1. Manual detection methods 
A powerful tool for analysing satellite data is specialised 
knowledge of the target landscape as well as the behaviours 
and characteristics of the objects of interest. A key aspect of 
the success of this study is field data validation and insight to 
reconcile and enhance detection models. Manual identification 
leverages conservation and field-team expertise by using 
humans with expertise to eyeball satellite imagery. Although 
it is incredibly time-consuming to scan satellite images, and 
exceptional attention to detail and insight are required for 
this process, it proved invaluable in probing the value and 
challenges of satellite data. This process, in combination with 
on-the-ground field sightings made at the time of satellite 
image acquisition, was used to deduce and interrogate species 
identification. 

4.1.1. Approach 1: Human Identification and Ground Truthing 
To coordinate this approach, two areas in Madikwe were 
targeted, totalling 200km2 of Madikwe Game Reserve. Both 
were areas known for wildlife density. The capture was 
scheduled for 10:33am South African Standard Time (SAST) on 
2 March 2022, at an incident angle of <15°. On the same day, 
three teams collected field data on wildlife positions between 
10:30am and 12:30pm. 

A similar process was undertaken for Sera Wildlife Sanctuary 
and Il Ngwesi Sanctuary in collaboration with NRT’s GIS and 
field teams. At 11:30am East Africa Time (EAT) on 13 February 
2022, 30cm Pléiades Neo imagery was captured of 100km2 of 
Sera Wildlife Sanctuary at an incident angle of 1.64° with <5% 
cloud cover. Only a handful of target species were sighted at 
this time, so the focus moved to Madikwe. 

As shown in Figure 2, field teams took different routes through 
Madikwe’s tasked areas, specifically near water points where 
wildlife (particularly elephants and rhinos) is frequently seen, 
either at the water point itself or travelling to/from it. 

During this tasking, 57 animals were identified on the ground 
and in the field during the satellite pass-over and were plotted 
by location (as seen in Table 2) with grid references to an area 
of approximately 500mx500m. Sightings were plotted in the 
middle of the grid, or where the vehicle spotting the animals 
was likely positioned when an identification was made. These 
are also shown in Table 2. 

The most relevant sightings were between 10:44am and 
10:59am, with many animals also spotted around 11:30am to 
11:40am. Given their speed of travel over an hour, these herds 
were expected to be well within the tasking area at 10:33am, 
which was when the satellite would pass, and were expected to 
be seen on the satellite imagery. 

Figure 2: Planned field team routes, Madikwe Game Reserve (map data: Google, Airbus/ Maxar Technologies) 
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Species Number Time (SAST) Location 

Elephant 9 10:44am Location 1 

Giraffe 6 10:59am Location 2 

Giraffe 3 11:30am Location 3 

Elephant 9 11:30am Location 3 

Kudu 2 11:30am Location 3 

Elephant 4 11:34am Location 4 

Elephant 15 11:38am Location 5 

Elephant 9 12:31pm Location 6 

Table 2:  Extract of Field sighting recordings, Madikwe Game Reserve 

Pléiades Neo © Airbus DS 2022 

Figure 3: Field sightings locations, Madikwe Game Reserve 
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Figure 4 shows extracts from the satellite image shown in 

Figure 3 indicate sightings of elephants. Also included is one 
cropped image of the southern tasking area that captured and 
sighted rhinos during this exercise. All exported raster images 
were taken at a 1:100 scale. Using field data, it was concluded 
that the bottom left image contains only rhinos, and the animals 
in the rest of the image are elephants. This example indicates 
how difficult it is to differentiate between rhinos and elephants 
in 30cm imagery that is taken close to the nadir line. 

Pléiades Neo 
© Airbus DS 2022 

Figure 4: Animal sightings – extracts from images, 
Madikwe Game Reserve 

Conservation experts with substantial field experience then 
manually scanned the satellite imagery with the human eye, 
identifying 110 large mammals across the 200km2 area of 
interest. Conservation experts used their in-depth knowledge 
of the reserve and the behaviours of different species groups 
to record their understanding of the sightings, assigning a 
confidence value (%) to the certainty of their identification. 
Examples of conservationist and field knowledge enhancing 
this process include the knowledge of species moving in 
herds, movement along known game paths, standing in ways 
indicative of specific species groups, and the known locations 
frequented by of popular species. 

Here are two further examples showing the challenges in 
identifying elephants and determining accurate elephant 
numbers in 30cm satellite imagery with the human eye. 

Example 1 

At 10.44am, 10 minutes after satellite image capture, field 
teams sighted a herd of 9 elephants at location 1.When the 
imagery was later analysed by local conservation experts, who 
know the terrain and animals, they looked for 9 elephants in the 
vicinity. The red pins in Image 5: Zoom 1:983, Madikwe Game 
Reserve mark the potential location of elephants identified 
using just the human eye. In this image, some elephants are out 
in the open by the road, others are in the bushes near the pan. 
From this zoom level (1:983), the naked eye can tell that most 
of the pins mark animals. If there is some scale – for example, 
if the naked eye has been calibrated by looking at 30cm satellite 
imagery – and some on-the-ground knowledge of the terrain, 
one can determine that the animals are elephants, because they 
are larger than the other animals that appear in other areas of 
the satellite imagery. Some knowledge of elephant behaviour – 
that is, that there are often in herds in this location – supports 
this conclusion. 

Pléiades Neo © Airbus DS 2022 

Image 5: Zoom 1:983, Madikwe Game Reserve 

Image 6 is the upper half of Image 5, zoomed to 1:629. The 

elephants marked with the red pins are in relatively open terrain. 
These elephants have a fairly clear elephant shape from the top-
down: a roundish head with a larger, oblong body. 

The elephant marked with the blue pin is a bit trickier. Although 
it does not have exactly the same shape as the elephants 
with the red pins, the shape is similar enough and the size is 
consistent with the size of the other elephants. With knowledge 
of the terrain, there is nothing else that it can be: there is no 
physical object like a rock or bush in that location. 
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Now look at where the blue and pink arrows are pointing, 
towards the bushes. It seems like there might be other 
elephant(s) next to the bush. It is more difficult to tell from the 
image only because the bush is partially obscuring the shape 
of the elephant. Determining that these are not bushes or rocks 
requires on-the-ground confirmation. 

Pléiades Neo © Airbus DS 2022 

Image 6: Zoom 1:629, Madikwe Game Reserve 

Zooming in further does not help – in fact, it makes the image 

worse. Image 5 is the part of Image 4 with the blue-pinned 
elephant zoomed in to 1:165. Even at 30cm, the resolution is 
insufficient to confirm what the shape is. 

Pléiades Neo © Airbus DS 2022 

Example 2 

A second example that illustrates the challenges in identifying 
and counting elephants in 30cm imagery relates to the size of 
elephants and various wildlife. Image 8 is at 1:629. The naked 
eye can see two objects inside the red circle. The two objects 
look much smaller than the surrounding elephants, and it would 
not be typical elephant behaviour for two young elephants to 
be away from their mothers, let alone separated from the herd 
by bushes. We can conclude that these two objects are likely 
not elephants, but affirmatively identifying what they are is not 
possible from the image. 

Pléiades Neo © Airbus DS 2022 

Image 6: Zoom 1:629, Madikwe Game Reserve 

Adult elephants are the largest animals in the study areas, and 

there are numerous challenges to identifying them and counting 
them in heterogeneous environments using 30cm satellite 
imagery, as shown above. These challenges are even greater for 
animals that are smaller than adult elephants: young elephants, 
buffalo, rhino and plains game like wildebeest, zebra, impala, 
and so on. It is also difficult to differentiate between different 
species when game is mixed, for example when congregating 
around watering holes. 

Image 7: Zoom 1:165, Madikwe Game Reserve 
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4.2. Artificial intelligence detection methods 
To create a species-detection model, labelled imagery of the 
objects of interest is needed to train an intelligent model. 
While there is availability of free and open Earth observation 
data at the medium to low spatial resolution,  image licence 
agreements currently restrict the sharing of high-resolution 
imagery. This limits the ability to build a central repository of 
training data that can be shared by independent projects. 

Additionally, manually screening satellite data for species-
labelling purposes is not a viable method of building 
large training data sets. This is because volumes of aerial 
perspectives of savannah animals across available Airbus high-
resolution imagery are low. 

Objects within these satellite images can often be too small or 
obscure for the human eye to notice, and sometimes too small 
for methodologies to accurately identify (as noted in Section 4.1). 

Working with satellite data also creates unique 
challenges namely: 

• Imagery is not easily accessible because the scale of the 
image is too large. 

• Satellite images have several features which prove 
challenging when it comes to classifying objects (incident 
angles, shadows, clouds, noise, lighting, radiation, 
atmosphere). 

• There are limited verification methods to confirm the 
accuracy of object classification. 

• Changing terrain and background conditions as well as 
insufficient resolution of satellite images are additional 
obstacles. 

Noting these challenges, the team set about exploring 
alternative methods to create synthetic training data and 
test sets. 

After an in-depth discovery phase, separate teams defined 
two AI methodologies to address the problem statement at 
hand: Spot and Label Object Detection and Binary Large Object 
Detection and Classification. 

Creating synthetic training data and using AI techniques, the 
team from NTT and Dimension Data addressed the following 
research questions: 

• Can we use synthetic data to train models? 

• Can we detect and classify large animals (over 1m in size) in 
homogeneous environments? 

• Can we detect and classify these animals in heterogeneous 
environments? 

• Can we improve the degree of accuracy of detection 
and identification by augmenting inference with
 additional knowledge? 

4.2.1. Synthetic image test sets 
Because training imagery was lacking, both approaches 
explored the use of synthetic test sets inserted on satellite 
images (referred to throughout this paper as ‘stitching’). 
Synthetic image stitching sought to create a set of labelled 
imagery using synthetic species samples stitched into the 
original satellite image. 

The synthetic test set comprised a mix of 10,000 species 
targets. Some images were synthetic, from animal figures, 
some were adapted from drone or close-range aerial views, and 
some were computer-generated. Using these different sources 
of imagery of animals, the samples were scaled to match the 
required satellite resolution. The scaled-down samples were 
then inserted into the satellite imagery on a pixel-by-pixel basis. 
Using this artificial set of labelled data, the model was trained to 
identify and classify potential objects of interest (which varied 
in size, colour and shadow variation). 

Down sampling of other aerial data followed a similar 
approach but focused on using drone and aerial data that 
was downscaled and masked to match the resolution of the 
relevant satellite data. The sample dataset focused on synthetic 
variations of size, colour and shadow. 

4.2.2 Approach 2: Spot and Label Object Detection 
The object detectors proposed in this approach look at 
supervised learning models with labelled datasets. The 
approach focused on a single species for validation. The rhino 
was selected for this approach, based on the novelty of the 
problem statement for rhino conservation and the limited 
exploration of rhino modelling using satellite data. 

4.2.2.1. Methodology 
Three state-of-the art object detector models were identified as 
being best suited to rhino classification: RetinaNet (using the 
ResNet50 backbone), EfficientDet (EfficientNet backbone) and 
YOLOv5 (using CSPDarkNet and a PANet neck). The models 
were selected for their varying levels of success when being 
applied to other datasets. 

Research in support of this approach is a CowNet study 
(Robinson et al., 2021) in which semi-consistent results were 
achieved in localising and detecting large hooved animals 
(cows and elks) in open fields on 30cm:1pix images. The 
study had over 10,000 labelled animals in its dataset, making it 
conducive to model training. 

For this study, metrics of interest were precision and recall. A 
metric that would be a good indicator of model performance was 
detections on unreferenced data (i.e., an image with no confirmed 
rhinos). The intent was to evaluate model performance by testing 
the number of positive rhino identifications. 

7. Ray Harris and Ingo Baumann. 2015. Open data policies and satellite Earth observation. Space Policy, Volume 32, pages 44–53. 
Available from: https://www.sciencedirect.com/science/article/abs/pii/s0265964615000028 

https://www.sciencedirect.com/science/article/abs/pii/s0265964615000028
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4.2.2.2. Synthetic training data preparation 
For this study, no satellite training data was available for rhinos. 
Object detection approaches require an incredibly large amount 
of training data to ensure that the model can reasonably learn 
differentiating features. 

To address this species-specific challenge, a synthetic training 
data set was explored. This involved cropping rhino images 
taken from aerial imagery of varying resolution into bounding 
boxes. Each bounding box was a masked rhino, which was 
then downscaled and resized to the resolution of the satellite 
sub-image in the training set. For 50cm, the longest side of 
the bounding box was mapped to 9 pixels (i.e., 4.5m on the 
ground). The shorter side was mapped to nine*boxMinLength/ 
boxMaxLength (which ranges from 4 to 7 pixels). For 30cm, the 
longest side was mapped to 15 pixels (i.e., 4.5m on the ground). 

The key challenges for both 50cm and 30cm satellite data 
were the consistency in the conversion quality of 16-bit source 
images to 8-bit images required by the model, the handling of 
large image sizes and the amount of signal in the image due to 
splitting and upscaling (50cm images were split at 96x96 pixels, 
then upscaled to 384x384 pixels; 30cm imagery was cut at 
768x768 pixels and downscaled to 384x384 pixels). 

A hold-out method was applied by splitting the dataset into 
a ‘train’ set and a ‘test’ set, with precision and recall metrics 
evaluated for model performance. When running the model 
on the held-out dataset, it was expected there would be a high 
number of true positive detections and a lower number of false 
positives and negatives. False negatives are concerning, as they 
mean the detector is missing positive rhino sightings. However, 
the lack of labelled training datasets posed two issues with this 
approach: there was not enough training data or validation data 
to measure the accuracy of the model’s performance. 

4.2.2.3. Model technical description 
The RetinaNet is a 1-stage detector with two subnetworks for 
classification and regression. It uses focal loss to address the 
imbalance between foreground and background. Examples such 
as backgrounds are down-weighed, which enables the model 
to focus training on the harder examples. One of the RetinaNet 
backbone configurations is the resnet_50_fpn. The intermittent 
assimilation of the identity function in the Resnet design 
makes the network capable of going deeper, thus increasing 
the capacity for learning. The Feature Pyramid Network (FPN) 
design connects various stages in the architecture, making 
it capable of detecting objects at different scales. These 
variations enable the RetinaNet/Resnet_50/FPN combination 
model to be both accurate and fast. 

The ‘You Only Look Once’ (YOLO) is a set that performs 
detection in a single stage. The model does not utilise Region 
Proposal Networks (RPN); instead, it divides the image into 
grid boxes and each grid box is responsible for detecting 
species within its borders. Information is processed as a 
regression problem for both the bounding boxes and the class 
probabilities. The model preserves spatial relationships and 
can encode and recognise contextual information. One of the 
backbone configurations available is ‘small,’ i.e., YOLOv5s. Being 
small, it has the advantage of fast processing speed. 

EfficientDet is a 1-stage design model; it uses multiple 
bidirectional FPNs to refine the scalability of features for depth, 
width and resolution. 

4.2.2.4. Training, testing and model results 
Models were initially trained on 50cm Madikwe images. Figure 
5 shows the comparison of model performance results. It is 
noted that, due to the complexity of the image background, 
many detections were in fact not rhinos but consistent 
misclassifications of other objects of interest. 

This exercise was of limited value to addressing the problem 
statement; however, it confirmed the assumption of YOLOv5 
being a preferred model for the classic approach to explore 
further satellite scenarios (preferably at a higher resolution with 
larger test datasets). 

Figure 5: 50cm synthetic model results for Spot and Label Object Detection model 
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The YOLOv5 model was evaluated on 30cm imagery. Again, the results show a low detection threshold (0.2) with a high number of 
false positives. Figure 6 is an example of this test result, with 47 true positives (based on synthetic stitching), 905 false positives 
and 279 false negatives (F16 Score: 0.14310254952137239; recall: 0.1441717791411043). 

The results for 30cm were still unsatisfactory because of the high number or false positives provided by the model. However, the 
spread of false positives compared to the synthetic ground truth indicates that a heatmap of potential detections, with custom 
model refinement and a larger labelled training dataset, may be a viable option. (See section 6 Future work) 

Pléiades Neo © Airbus DS 2022 

Figure 7: Process flow for Binary Large Object Detection and Classification approach 

Based on the low and 
inconsistent performance of 
industry-standard supervised 
learning models with limited 
ground-truth training data, 
this approach was deemed 
insufficient in terms of field-
team accuracy for wildlife 
monitoring. 

Based on the low and inconsistent performance of industry-
standard supervised learning models with limited ground-truth 
training data, this approach was deemed insufficient in terms 
of field-team accuracy for wildlife monitoring. However a more 
refined heatmapping approach of findings, as depicted in 
Figure 6, remains a candidate for future exploration. 

For further research and learning, the codebase for Approach 
2: Spot and Label Object Detection is available at the 
Connected Conservation Foundation GitHub. The repo includes 
the Spot and Label Object Detection approach pipeline: 
training, extracting animal sightings, creating synthetic data, 
splitting the satellite images for inference and, most valuably, 
the heatmap. 

Access the codebase for Approach 2: Spot and Label Object 
Detection 

Please email info@connectedconservation.foundation if you’d 
like to further research using these source materials 

mailto:mailto:info%40connectedconservation.foundation?subject=
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4.2.3. Approach 3: Binary Large Object Detection and Classification 

This approach sought to create a set of labelled imagery using synthetic 3D animal model samples stitched into the satellite 
imagery. Using this artificial set of labelled data, a detection model was trained to identify and classify potential objects of interest 
and a process was devised to run a new satellite image through a species detector. 

The actual species-detection aspect was split into two events: object detection and object classification. Object detection uses 
computer vision techniques to identify regions of interest, while object classification makes use of a bespoke convolution neural 
network model to perform predictions. 

Figure 7: Process flow for Binary Large Object Detection and Classification approach 

Object detection takes an input and tries to isolate regions of 
interest. If a region of interest is identified, the region is passed 
to the classification model for a prediction on what class 
(animal) the object may be, along with a likelihood score. The 
pixel coordinates of every detection as well as the classification 
of the animal are recorded and converted into map coordinates 
that can be used to find and identify animals. 

The pixel coordinates of 
every detection as well as the 
classification of the animal 
are recorded and converted 
into map coordinates that can 
be used to find and identify 
animals. 
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4.2.3.1. Methodology 
A supervised learning approach, CNN, was selected to 
detect and identify species on satellite images. With this 
approach, images are mapped to a set of specified labels. 
The convolutional neural network learns the visual features 
contained in the training images associated with each label and 
classifies unlabelled images. 

The images passed to the model were at 30cm resolution, 
with a height and width of 18cm. These images were split into 
a training and validation set: 80% of the images were used as 
training images and the remaining 20% were used for validation. 
All these images had labels linked to them. These labels 
corresponded to the following classes on which the prediction 
could be made: 

• Elephant 
• Elephant carcass 
• Giraffe 
• Hippo 
• Wildebeest 
• Hyena 
• Hyena carcass 
• Rhino 
• Rhino carcass 

4.2.3.2. Synthetic training data preparation 
As detailed in Section 4.2.1, the creation of synthetic data is 
vital to training a CNN model for animal classification. For this 
approach, the team used open-sourced computer-generated 
imagery of the animals in question to create samples. 
Samples are seen top-down, in 3D, and the outline and size of 
the animals, as seen from the nadir line. The samples were 
downscaled by a factor, using inter-area interpolation – a 
method of interpolating pixel values when downscaling to 
preserve as much of the original information as possible. 
The images were downscaled to match the satellite imagery 
resolution. 

It was also important that all backgrounds of the sample 
images were created with an empty (zero) pixel value, as this 
ensures that only the animal is inserted into the satellite 
image, and no background of the sample image is included. 

Figure 8: Downscaled elephant sample (to actual size) 

For each animal class, more training data can be created by 
rotating the original sample (through 360 degrees) as well as 
capturing colour variations. By augmenting the dataset in this 
way, many sample images were generated for training. A single 
sample was repeated for each animal class, with a focus on 
top-down views with minimal lighting variation. 

To create a training set, labelled animals on satellite imagery 
were needed. This was achieved by inserting each animal 
sample into a known location on the satellite image, on a 
pixel-by-pixel basis. The algorithm selected a random location 
on the satellite image and ingested a single animal sample. 
The ‘stitching’ of the animal sample into the satellite image 
was done by looking at the pixel values of the sample. At the 
location selected in the satellite image, the algorithm inserted 
each pixel from the sample that was not zero into the satellite 
image. If the sample pixel value was zero, either the satellite 
background or the sample pixel value was kept, thereby 
ensuring a perfect insertion of only the animal into the satellite. 

With defined samples at known locations, training data could be 
extracted from the now augmented satellite image. 
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Figure 9: Subsection of satellite image with elephant sample inserted 

4.2.3.3. Model architecture 
The convolutional neural network utilised for this use case 
consisted of six convolutional layers with an input shape of 
18x18x3. The third dimension in the input shape refers to the 
red, green and blue colour channel. There was also a maximum 
pooling layer: a pooling operation that calculates the largest 
value in each patch of each feature map. This resulted in a 
down-sampled or pooled feature map that highlighted the most 
present feature in the patch. 

This was followed by a dropout layer, which was used to prevent 
the model from overfitting. Dropout works by randomly setting 
the outgoing edges of hidden units (neurons that make up 
hidden layers) to zero at each update of the training phase. 

The SoftMax function was used as the activation function in 
the output layer of the convolutional neural network to predict 
the multinomial probability distribution. The SoftMax activation 
function is used for multi-class classification problems where 
class membership is required on more than two class labels. 
In this use case, there were nine possible classes, each 
representing a different species. 

4.2.3.4. Training model 
The model was trained through an 80/20 split: 80% of the 
available training data was used to train the convolutional neural 
network while 20% was used to test validation accuracy. The 
model was trained on the above animal classes and can easily 
be adjusted, depending on the sample images provided. The 
team aimed to provide training images that covered 
small (hyena), medium (wildebeest) and large (rhino, elephant) 
animal sizes. 

The convolutional neural network was trained over 10 epochs 
with a batch size of 32, meaning that the machine learning 
algorithm would pass over the entire training dataset 10 times, 
working through samples of size of 32 each time, before 
updating the internal model parameters. 

Figure 10 shows the training and validation accuracy plot of the 
model: while validation accuracy stops improving and flattens 
out at around 10 epochs, training accuracy will continue to 
improve beyond 10 epochs as the model seeks to find the best 
fit for the training data. The plot indicates that the model was 
not overfitting over 10 epochs. 

This was also evident in the training and validation loss plot, 
where the validation loss is on a steady downward path 
throughout the 10 epochs without any sudden increase in loss. 
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Figure 10: Convolutional neural network model training accuracy 

4.2.3.5. Testing and model results 

The current iteration of the convolutional neural network was 
tested on an unseen, augmented synthetic dataset consisting of 
the animals depicted in Figure 10. The synthetic animals were 
stitched into satellite imagery background and passed into the 
model for prediction. 

The X-axis shows the actual synthetic animals that were fed into 
the model and the colour corresponding to the key represents 
the percentage of the respective animal predicted. 

The model’s accuracy was tested in various ways. Although 
the training of the model itself is a supervised machine 
learning problem, the entire solution scope had to be treated 
as unsupervised, as there was no way to accurately validate 
the prediction labels at the current satellite image resolution. In 
terms of defining the accuracy of the model, validation accuracy 
was used to test the model against unseen images for testing. 

This was sufficient for the trained model to be used as a 
classifier in the overall solution. 



A Connected Conservation Collaboration

20 | © Copyright NTT Ltd. 

White paper 

 
 

 

4.2.3.5.1. Computer vision 

Before any image is sent for classification, a region of interest 
must be identified. For this model, a region of interest was 
described as a 16-pixel-by-16-pixel region that contains a 
potential Binary Large Object (BLOB). A BLOB is a feature in the 
region that possesses qualities such as connected pixel mass, 
consistent pixel values and circularity, among others. Only if the 
region contains a BLOB, is it sent for classification. 

Computer vision techniques are key in the BLOB 
detection process. The two main steps of the process 
are described below. 

4.2.3.5.1.1. Image patching 

This is the process of iterating through the image, splitting 
the satellite image into blocks of 128 pixels by 128 pixels. The 
blocks overlap by 30% to ensure no potential BLOB is lost at 
the image border. The process of splitting the satellite image is 
done by recursively reducing the satellite image matrix to the 

Figure 11: Representation of an individual image ‘patch’ 

bounds defined by the sub-image. 

Each image patch is then passed for further processing 
according to the rest of the algorithm. 

4.2.3.5.1.2. Image processing 

Each image undergoes a series of processing steps (as 
described earlier in this paper). Several kernel convolution 
methods (such as Gaussian and 2D filtering) are applied to 
each image patch. The purpose of this is to smooth the image, 
eliminating the large amount of noise present in the landscape. 

The goal of the image processing step is to eliminate unwanted 
image noise and to further isolate and highlight regions of 
interest. The image groups in Figure 12 show the histogram 

Figure 12: Results of image processing 

of pixel values of a random image patch containing a known 
animal sample before and after image processing has been 
applied. 

Morphological operations such as erosion and dilation were 
performed using kernel convolution. These operations have the 
goal of joining partially connected pixel groups while separating 
sparsely connected pixel groups. The result emphasises 
differentiation between objects on an image. 

Image clustering was then performed to map similar areas to 
a single pixel value. An example of this would be for all trees 
in an area (with varying shades of green) to be mapped to a 
single shade of green. This is done to emphasise any objects 
not conforming to the background landscape, in other words, 
a potential animal. Once this object (if any) is emphasised, it 
can be isolated using BLOB detection. This is done by isolating 
a collection of pixels determined to be an object by a set of 
predetermined criteria such as circularity, pixel connectedness 
and size. 

Once a BLOB is detected, the CV process is complete, and the 
sample is passed for classification. 
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The team building the CNN detection process had some 
positive results on various imagery using synthetic images. 
When the model was run on artificially inserted samples (such 
as the image group shown in Figure 13), results were consistent 
over largely heterogeneous environments. The number of 
positive sightings decreases over more complex terrain. 

Pléiades Neo © 
Airbus DS 2022 

Figure 13: Classification output from artificially inserted samples 

The animal classification process is heavily dependent on the 
input sample from the animal-detection process. While the 
performance of the animal-detection process is robust, the 
ability of the current model to isolate only the binary large object 
in question was limited, and this had a knock-on performance 
effect on the classification of this sample. Again, running 
the process in more complex environments compounds the 
isolation issue. 

4.2.3.6. Results 
The image detection (the ability of the model to detect Binary 
Large Objects) process was tested over actual sightings 
of large mammals in 50cm and 30cm imagery with some 
success in homogenous imagery and inconsistent results in 
heterogeneous data. Examples of the results are detailed below. 

As depicted in Image 9, the convolutional neural network model 
predicted 5 elephants. When validating the findings with field 
teams who are familiar with the area and herd behaviour, it was 
presumed that the model prediction was accurate, based on the 
relative size, number and location of elephants. The animals 
also appear to be walking in a line on a game path with one or 
two off the path, likely eating. However, without on-the-ground 
field confirmation at the time of the pass-over, it is not possible 
to accurately determine if this is correct. 

Pléiades (c) Airbus DS 2022 

Image 9: Pléiades 50cm image, Madikwe Game Reserve 

As shown in Image 10, the model detected small animals 
with low levels of accuracy. The model predicted 18 animals 
while human-eyeballing indicated over 150 small animals, 
with no verifiable ground-truth comparison. Attempts to refine 
the model to count and/or classify individual small species 
remain a challenge. The output is another viable candidate for 
heatmapping species or using models as an indicator of where 
to look for small, medium and large species. 

Pléiades Neo © Airbus DS 2022 

Image 10: Pléiades Neo 30cm image, Sera Wildlife Sanctuary, NRT 
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Another good test scenario occurred during a capture at a 
popular waterhole, as shown in Image 11. The model predicted 
55 objects of interest in this image, with 4 elephant detections 
and 51 null counts (i.e., unable to classify species). Expert 
eyeball classification noted 23 elephants. The ground-truth 
counts at time of the satellite pass-over indicated 21 elephants. 
Based on field-team ground validation, the rate of false 
positives in this image is extremely high, making the model an 
inconsistent tool for accurate species modelling at scale. 

Pléiades Neo © Airbus DS 2022 

Image 11: Pléiades 30cm image, Madikwe Game Reserve 

4.2.3.7. Model output 

There was some success with this model, in that it can 
accurately iterate through the satellite image and classify the 
artificially inserted animal samples. However, when tested 
against real wildlife sightings in 30cm satellite data, findings 
were inconsistent. Overall model performance increased 
significantly in homogeneous landscapes compared to more 
heterogeneous (bushy, trees etc.) landscapes. However, for this 
study, homogenous landscapes with target species present 
were limited at the identified test sites. 

The accuracy of the model tested against unseen labelled 
imagery – that is, the validation accuracy of the convolutional 
neural network – was 99.1%. This is a reflection on the model’s 
ability to learn based on the training data it was provided with, 
not a true reflection of the entire approach. Therefore, if more 
realistic labelled training data becomes available in the future, 
this model is a viable candidate for further exploration. 

The predictive performance of the entire solution is dependent 
on three factors (as seen in Figure 14): 

• Model training: how accurately the synthetic training 
data represents the real-world targets (animals): In size, 
shape and lighting, the training data accurately reflects 
real-world conditions, but might not capture varying lighting 
conditions in the background environment (shadows, over-
exposure, etc.) as accurately. 

• Object detection: how well the computer vision (object 
detection) aspect performs: The object detection process 
can work well in comprehensively defined circumstances. 
That is, the object detection performs well when it is 
configured for the landscape it is processing. Satellite 
imagery inherently possesses a large amount of variation, 
from incident angle and exposure to shadows and changing 
landscape seasonality. The scale of variation is extremely 
difficult to capture dynamically. 

• Object classification: how well the neural network is 
performing (object classification): Assuming a potential 
object of interest is correctly identified and isolated, it is 
found that the classification algorithm is able to classify 
the correct size category of species targets. 

Figure 14: Predictive performance of the Binary Large Object 
Detection and Classification model 

The methodology itself holds promise: when the computer 
vision and computational intelligence components have been 
combined, the model can process satellite imagery of a massive 
area of land (over 400 million pixels) in an iterative manner. 

The computer vision component can identify objects in a 
satellite image of any size and pass the area of interest over 
to the convolutional neural network to make a prediction. The 
procedural ability alone – to handle and process such large 
imagery with a confident degree of accuracy – proves that the 
method has viability for surveying species in large homogenous 
land areas. As it is not feasible to validate the entire solution 
against absolute ground-truth data at the scale required, any 
performance measure is derived from observable factors from 
subsets of the satellite capture and not the solution holistically. 
The recommendation is therefore for the model to be trained 
and tested on a greater set of satellite data that contains 
confirmed labelled species to improve and test overall model 
performance. 

For further research and learning, the codebase for Approach 3: 
Binary Large Object Detection and Classification is available the 
Connected Conservation Foundation GitHub. 

Access the codebase for Approach 3: Binary Large Object 
Detection and Classification 

Please email info@connectedconservation.foundation if you’d 
like to further conduct research using these source materials 

mailto:info%40connectedconservation.foundation?subject=
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5. Conclusion 

This field-based study set out to compare the accuracy of 
different methods of identifying large mammals in the highest-
resolution satellite imagery available from Airbus (from the 
Pléiades and Pléiades Neo satellites). These methods included 
detections made by two AI approaches and the human eye, 
which were compared with on-the-ground field sightings 
for a small set of locations made at the same time as the 
satellite image acquisition. The study found that both AI-
based and human detection of animals on satellite imagery of 
heterogeneous landscape presents many opportunities for error 
and variable results. 

In reviewing the practicalities described in Approach 1 and 
results from Approaches 2 and 3, and comparing these to 
traditional wildlife survey techniques, conservation teams at 
NRT and Madikwe Game Reserve concluded that the accuracy 
of both AI-based and human detection of species on 30cm 
satellite imagery was not satisfactory for their heterogenous 
landscapes and therefore could not replace traditional survey 
techniques. Even when applying additional information on 
animal behaviours and known movements during Approach 1, 
field teams were unable to validate species classifications with 
satisfactory certainty for a wildlife survey. 

Until new aerial drone technologies enable resolution to move 
beyond 30cm resolutions to < 20cm, these methods should not 
be pursued as an individual-species-count survey technique for 
large mammals in variable landscapes. 

The next phase of the project will go on to identify the 
species and situations where 50cm and 30cm resolution 
satellite imagery can be of value in locating other animals 
in homogenous, hard-to-reach environments where greater 
variability in accuracy can be tolerated. For example, it was 
reported that more accurate results can be expected when 
isolating scenarios to areas with only one known species found 
in a homogenous, open landscapes or seascapes, especially 
when the species of interest stand out in strong contrast to their 
background environment. 

A notable outcome and learning of this study considers the 
error of the AI models. Rather than giving precise locations, 
it provides a heatmap of potential sightings as an indicator 
of ‘where to look’ for human-eyeballing of an image. As it 
is incredibly time-consuming to scan satellite images with 
the human eye – an exercise that also requires exceptional 
diligence – consulting an AI model is valuable in that it 
highlights areas of potential detection. This ‘where to look’ 
heatmap of sightings offers suggestions for performing a first 
pass of the imagery for human identification and validation. 
Field teams believe this would be useful for certain use cases, 
including locating hard-to-find colonies or herds of certain 
species in remote areas. 

An example of the heatmap output produced in Approach 2 for 
field teams to review is shown in Figure 15. 

Pléiades Neo © Airbus DS 2022 

Figure 15: ‘Where to look’ heatmapping example 

6. Future Work 

Efforts directed at homogenous use cases and species 
heatmapping may prove favourable at scale. A next step is 
to explore the species and situations where AI and 30cm 
imagery can produce more accurate results. Future exploration 
and studies should look at situations when species are in 
groups, not mixed with other animals, and stand out against 
homogenous backgrounds in terms of colour and limited 
background variability, such as water. Examples include 
albatross, dugong, penguins, desert oryx species and hippos. 
Additionally, having multiple images of the same landscape 
presents opportunities to explore the benefits of change 
detection: identifying permanent or moving objects in the 
landscape to extract objects of interest and create more 
definitive labelled training sets for further model training. The 
project team did raise questions about whether partners could 
afford the high expense of taking multiple images of the same 
area of interest. In addition, from the initial comparisons made 
during this project it is clear that there are significant challenges 
presented by the variability of lighting, shadows and incident 
angles on images of the same area of interest taken at different 
times of the day or year. 

In support of future and further conservation research and 
value, the codebase for the approaches covered in this study 
have been made available to be trialled and improved upon via 
the Connected Conservation Foundation GitHub repository. 

Access the codebase for all approaches covered in this study. 

Please email info@connectedconservation.foundation if you’d 
like to further conduct research using these source materials 

mailto:info%40connectedconservation.foundation?subject=
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7. Related Work 
Table 3 gives a summary of past and current research in animal detection and identification. To inform this study on the varying 
levels of success using high-resolution satellite imagery for detection and identification, research related to the following species 
was explored: polar bears, penguins, yaks, elk, wildebeest, zebra, whales, albatross, elephants and livestock. 

Species  Research and summary of findings 

Elephants Automatic detection of elephants in South Africa 

Researchers were able to automate the counting and detection of elephants in Addo Elephant Park 
with a higher accuracy level than that achieved by humans detecting species within the satellite 
imagery. This was done using a neural network algorithm and high-resolution satellite imagery. The 
detections were not compared to field data on the ground. 

Reference: Duporge, I., Isupova, O., Reece, S., Macdonald, D. and Wang, T., 2020. Using very‐high‐resolution 
satellite imagery and deep learning to detect and count African elephants in heterogeneous landscapes. 
Remote Sensing in Ecology and Conservation, 7(3), pp.369–381. 

Large mammals Automatic counting large mammals and discerning mammals from their background 

In this study, researchers were able to automate the counting of large mammals like zebra and 
wildebeests using a neural network algorithm and high-resolution satellite imagery. Researchers 
also attempted distinguishing animals from various backgrounds. 

Reference: Xue, Y., Wang, T. and Skidmore, A., 2017. Automatic counting of large mammals from very high-
resolution panchromatic satellite imagery. Remote Sensing, 9(9), p.878. 

Albatross Manual counting of individual albatrosses in remote areas 

Researchers were able to accurately count a population of albatrosses in a remote, inaccessible 
area using extremely high-resolution satellite imagery (0.3m/pixel). 

Reference: Bowler, E., Fretwell, P., French, G. and Mackiewicz, M., 2020. Using deep learning to count 
albatrosses from space: assessing results considering ground-truth uncertainty. Remote Sensing, 12(12), 
p.2026. 

Elk and livestock Detecting cattle and elk in the wild from space 

This study focused on a baseline method, CowNet, that simultaneously estimates the number of 
animals in an image (counts) and predicts their location at a pixel level (localises). 

Reference: Robinson, C., Ortiz, A., Hughey, L., Stabach, J.A. and Ferres, J.M.L., 2021. Detecting cattle and elk in 
the wild from space. arXiv preprint arXiv:2106.15448. 

Counting cows: Tracking illegal cattle ranching from high-resolution satellite imagery 

Using a neural network algorithm and high-resolution satellite images, researchers were able to 
automate the counting of cattle in the Amazon to monitor illegal cattle farming. More images and 
work are recommended for scaling this approach. 

Reference: Laradji, I., Rodriguez, P., Kalaitzis, F., Vazquez, D., Young, R., Davey, E. and Lacoste, A., 2020. Counting 
cows: Tracking illegal cattle ranching from high-resolution satellite imagery. arXiv preprint arXiv:2011.07369. 

Livestock Counting cows: Tracking illegal cattle ranching from high-resolution satellite imagery 

Using a neural network algorithm and high-resolution satellite images, researchers were able to 
automate the counting of cattle in the Amazon to monitor illegal cattle farming. More images and 
work are recommended for scaling this approach. 

Reference: Laradji, I., Rodriguez, P., Kalaitzis, F., Vazquez, D., Young, R., Davey, E. and Lacoste, A., 2020. Counting 
cows: Tracking illegal cattle ranching from high-resolution satellite imagery. arXiv preprint arXiv:2011.07369. 
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Species  Research and summary of findings 

Livestock How do you find the green sheep? A critical review of the use of remotely sensed imagery to 
detect and count animals 

This paper reviews recent studies on methods, data requirements and the practical and operational 
considerations of using remote sensing technologies to estimate animal abundance. It also 
considers the advantages of better resolution and lower cost imagery, greater computing power, 
and more advanced statistical algorithms and programming. 

Reference: Hollings, T., Burgman, M., van Andel, M., Gilbert, M., Robinson, T. and Robinson, A., 2018. How do 
you find the green sheep? A critical review of the use of remotely sensed imagery to detect and count animals. 
Methods in Ecology and Evolution, 9(4), pp.881–892. 

Multiple species Surveying wild animals from satellites, manned aircraft and unmanned aerial systems (UASs) – a 
review (“Surveying Wild Animals from Satellites, Manned Aircraft and Unmanned ...”) 

This paper looks at numerous studies on wild-animal surveys and focuses on the data used, 
animal-detection methods, and their accuracies. The proposed use of UAS imagery in combination 
with very high-resolution (VHR) satellite imagery would produce critical population data for large 
wild-animal species and colonies over large areas. The development of software systems for 
automatically producing image mosaics and recognising wild animals will further improve survey 
efficiency. 

Reference: Wang, D., Shao, Q. and Yue, H., 2019. Surveying wild animals from satellites, manned aircraft, and 
unmanned aerial systems (UASs): A review. Remote Sensing, 11(11), p.1308. 

Multiple species Spotting East African mammals in open savannah from space 

Knowledge of population dynamics is essential for managing and conserving wildlife; however, 
traditional methods of counting come with challenges. This study explores the possibility of 
detecting large animals in open areas from VHR GeoEye-1 satellite images. A hybrid image 
classification method was employed by incorporating the advantages of both pixel-based and 
object-based image classification approaches. The results showed that, for the first time, it is 
feasible to perform automated detection and counting of large wild animals in open areas from 
space, and therefore provided a complementary and alternative approach to conventional wildlife 
counting methods. 

Reference: Yang, Z., Wang, T., Skidmore, A.K., De Leeuw, J., Said, M.Y. and Freer, J., 2014. Spotting 
East African mammals in open savannah from space. PloS one, 9(12), p.e115989. 

Multiple species Satellite imagery for wildlife monitoring & tracking 

High-resolution satellite imagery gives scientists and researchers increasingly up-to-date 
geospatial data. By using neural networks processing, reliable statistics are obtained for 
monitoring wildlife migrations, mapping habitats and tracking endangered species in remote areas 
of the world to assist in management and conservation activities. 

Reference: Satellite Imaging Corporation. 2022. Satellite imagery for wildlife monitoring & tracking. [online] 
Available at: <https://www.satimagingcorp.com/applications/environmental-impact-studies/wildlife-and-
marine-conservation/wildlife-monitoring/> [Accessed 10 October 2022]. 

Polar bears Polar bears from space: assessing satellite imagery as a tool to track Arctic wildlife 

High-resolution satellite imagery was evaluated as a tool to track the distribution and abundance 
of polar bears. Bears were distinguished from other light-coloured spots by comparing images 
collected on different dates. A sample of ground-truth points demonstrated that the bears 
were accurately classified. These findings suggest that satellite imagery is a promising tool for 
monitoring polar bears on land, with implications for use with other Arctic wildlife. 

Reference: Stapleton, S., LaRue, M., Lecomte, N., Atkinson, S., Garshelis, D., Porter, C. and Atwood, T., 2014. 
Polar bears from space: assessing satellite imagery as a tool to track Arctic wildlife. PLoS One, 9(7), p.e101513. 






